Ascent Properties of Auslander Categories
نویسنده
چکیده
Let R be a homomorphic image of a Gorenstein local ring. Recent work has shown that there is a bridge between Auslander categories and modules of finite Gorenstein homological dimensions over R. We use Gorenstein dimensions to prove new results about Auslander categories and vice versa. For example, we establish base change relations between the Auslander categories of the source and target rings in a homomorphism ϕ : R → S of finite flat dimension.
منابع مشابه
1 Ju l 2 00 3 The relationship between homological properties and representation theoretic realization of artin algebras
We will study the relationship of quite different object in the theory of artin algebras, namely Auslander-regular rings of global dimension two, torsion theories, τ -categories and almost abelian categories. We will apply our results to characterization problems of Auslander-Reiten quivers. 0.1 There exists a bijection between equivalence classes of Krull-Schmidt categories C with additive gen...
متن کاملThe Relationship between Homological Properties and Representation Theoretic Realization of Artin Algebras
We will study the relationship of quite different objects in the theory of artin algebras, namely Auslander-regular rings of global dimension two, torsion theories, τ -categories and almost abelian categories. We will apply our results to characterization problems of Auslander-Reiten quivers. 0.1. There exists a bijection between equivalence classes of Krull-Schmidt categories C with additive g...
متن کاملAuslander-reiten Theory via Brown Representability
We develop an Auslander-Reiten theory for triangulated categories which is based on Brown’s representability theorem. In a fundamental article [3], Auslander and Reiten introduced almost split sequences for the category of finitely generated modules over an artin algebra. These are short exact sequences which look almost like split exact sequences, but many authors prefer to call them Auslander...
متن کاملLocally finite triangulated categories ✩
A k-linear triangulated category A is called locally finite provided ∑ X∈indA dimk HomA(X,Y ) < ∞ for any indecomposable object Y in A. It has Auslander–Reiten triangles. In this paper, we show that if a (connected) triangulated category has Auslander–Reiten triangles and contains loops, then its Auslander–Reiten quiver is of the form L̂n: · · · · ̂ n n− 1 2 1 By using this, we prove that the Aus...
متن کاملHigher dimensional Auslander-Reiten theory on maximal orthogonal subcategories
We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...
متن کامل